Reduced m6A mRNA methylation is correlated with the progression of human cervical cancer
نویسندگان
چکیده
The m6A mRNA methylation involves in mRNA splicing, degradation and translation. Recent studies have revealed that reduced m6A mRNA methylation might promote cancer development. However, the role of m6A mRNA methylation in cervical cancer development remains unknown. Therefore, we investigated the role of m6A methylation in cervical cancer in the current study. We first evaluated the m6A mRNA methylation level in 286 pairs of cervical cancer samples and their adjacent normal tissues by dot blot assay. Then the role of m6A on patient survival rates and cervical cancer progression were assessed. The m6A level was significantly reduced in the cervical cancer when comparing with the adjacent normal tissue. The m6A level reduction was significantly correlated with the FIGO stage, tumor size, differentiation, lymph invasion and cancer recurrence. It was also shown to be an independent prognostic indicator of disease-free survival and overall survival for patients with cervical cancer. Reducing m6A level via manipulating the m6A regulators expression promoted cervical cancer cell proliferation. And increasing m6A level significantly suppressed tumor development both in vitro and in vivo. Our results showed that the reduced m6A level is tightly associated with cervical cancer development and m6A mRNA methylation might be a potential therapeutic target in cervical cancer.
منابع مشابه
m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells
RNA modifications play critical roles in important biological processes. However, the functions of N6-methyladenosine (m6A) mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m6A mRNA modification is critical for glioblastoma stem cell (GSC) self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransfera...
متن کاملMultiple functions of m6A RNA methylation in cancer
First identified in 1974, m6A RNA methylation, which serves as a predominant internal modification of RNA in higher eukaryotes, has gained prodigious interest in recent years. Modifications of m6A are dynamic and reversible in mammalian cells, which have been proposed as another layer of epigenetic regulation similar to DNA and histone modifications. m6A RNA methylation is involved in all stage...
متن کاملYeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment
Interest in mRNA methylation has exploded in recent years. The sudden interest in a 40 year old discovery was due in part to the finding of FTO's (Fat Mass Obesity) N6-methyl-adenosine (m6A) deaminase activity, thus suggesting a link between obesity-associated diseases and the presence of m6A in mRNA. Another catalyst of the sudden rise in mRNA methylation research was the release of mRNA methy...
متن کاملAMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine
Skeletal muscle plays important roles in whole-body energy homeostasis. Excessive skeletal muscle lipid accumulation is associated with some metabolic diseases such as obesity and Type 2 Diabetes. The energy sensor AMPK (AMP-activated protein kinase) is a key regulator of skeletal muscle lipid metabolism, but the precise regulatory mechanism remains to be elucidated. Here, we provide a novel me...
متن کاملبررسی نقش ژنهای JAK2 و STAT3 در سرطان ریه
Title: Evaluation of expression and methylation of promoter of JAK2 and STAT3 genes in lung cancer tissue and its comparison with adjacent healthy tissue in 75 people with this cancer. Objective: Lung cancer is a disease that affects lung tissue cells. It is a common cancer in the world and is one of the deadliest cancers. Molecular variations of genes have a significant effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017